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ABSPRACT 

This paper  carries  out a study of optimal  branched tra- - 
j ec tor ies .  Branched t r a j e c t o r i e s  are a c lass   o f   t raJec tor le8  
that   includes  the motion of several   vehicles  which t r a v e l  
un i ted   for  some time and  then  break  apart   in  order  to  proceed 
ind iv idua l ly   to   separa te  end conditions. The problem is 
transformed t o  the c l a s s i ca l   va r l a t iona l  problem of Bolza  by 
several   l inear   t ransformst ions of time. A t  t h i s   po in t  the 
established necessary minimizing conditions  of  optimsl  control 
theory may be applied. A number of  applications are considerecl 
and  numerical  solutions are obtained I n  t uo  caaes. 
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SoeilE OPTIMAL BRANCHED  TRAJECTOFUES 

By Joseph D. Mason 
TRW  Systems:  Group 

SUMMARY 

The  application of modern  optimization  techniques  to  aerospace 
trajectory  design  and  guidance  development  has  previously  been  limited 
to  two  classes.  First,  optimal  trajectories  have  been  determined  for 
individual  vehicles  with a single  mission.  Second,  the  trajectories 
for  two  or  more  vehicles  engaged in a cooperative  or  contradictory  game 
have  been  examined.  Mathematical  techniques  such  as  the  calculus  of 
variations  have  been  successfully  applied  to  some  problems  of  the  first 
group  while  the  development  of  the  theory  of  differential  games  has 
provided a method  of  solution  for  some  multiple  vehicle  problems. 

A third  group  of  aerospace  trajectories  which  is an outgrowth  of 
the  variational  treatment  of  single  vehicle  motion  may  be  categorized 
as  branched  trajectories.  This  class  includes  the  motion  of  several 
vehicles  which  travel  united  for  some  time and then  break  apart in 
order  to  proceed  individually  to  separate  end  conditions. 

If a single  performance  index  can  be  stated  for a branched  tra- 
jectory  then  the  optimization  problem  can  be  converted  to a conventional 
optimal  control  problem  of  Bolza  by  means  of  several  linear  transform- 
ations of time.  Using  this  approach  the  well  established  necessary 
minimizing  conditions  of  optimal  control  theory  can  be  applied  directly 
to  the  branched  trajectory  problem. 

The  particular  applications  considered  include a variety  of  con- 
ceptually  different  problems.  First,  the  insertion  of  two  payloads 
into  separate  orbits  with a single  launch  vehicle  is  examined.  The 
optimal  staging  of  such a vehicle  is  also  treated.  Next, a method  of 
designing  launch  trajectories  based on abort  (or  alternate  mission) 
capability  is  presented.  This  method  permits  fixing  the  primary  mission 
performance  while  improving  the  ability  to  abort in case  of  failure. 
Branched  maneuvers  of  lunar  lander/orbiter  vehicles  are also examined 
as  are  cooperative  multiple  aircraft  maneuvers. 

Numerical  solutions  for  the  two  payload  launch  and  the  abort 
problem  are  presented.  These  solutions  demonstrate  the  feasibility 
and  Wide  applicability  of  optimal  branched  trajectory  theory. 



1.0 INTRODUCTIaJ 

Cons ider   the   t ra jec tory   des ign   for  a multistage  rocket having the  
capability  of  deploying  several  upper stages simultaneously and the  
.mission of inserting,  with  each  upper  stage, a f ixed payload i n to   o rb i t .  
Such a   t ra jec tory  i s  represented  by  Figure 1. As i nd ica t ed   t h i s  tra- 
jec tory   cons is t s   o f   four  segments called  branches. The first stage 
burns along branch 1 and the  empty s tage i s  discarded a t  point B. The 
upper   s tages   igni te   a t  B and proceed  along  branches 2,3 and 4 respectively. 
Three  payloads a re   inser ted   in to   th ree   separa te   o rb i t s  a t  p i n t s  P1, P2. 
and P . If each of the  three  payloads is f ixed   t hen   t he   t r a j ec to ry   des  
and sgage sizing might  be  based  on minimizing initial weight  (at  point 

D 

FIGURE 1. A Multiple Payload Trajectory 

Trajector ies  of the  type  just   descr ibed  are   typical   of  a much 
l a r g e r   c l a s s  known as branched t r a j e c t o r i e s .  They d i f f e r  from con- 
vent iona l   t ra jec tor ies  in that t h e   s t a t e  and control  dimensions  vary 
(discretely)  with  t ime. Also, i n  the  most general   case,   the end points 
of each  of  the  branches  are  related  through imposed terminal and 
intermediate  boundary  conditions. 
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J" mathematical terms a branch is defined by a pair of par y t e r s  
a j ,  b with bJ > aJ ,  a continuous  n-dimensional  state v c t o r  x ( t )  
and a piec  wise  continuous  q-dimensional  control  vector u (t ) with 
aJ t S b . Each branch w i l l  be  identified by the  index j = 1,. . . , m. 
On the  j- th  branch  the  state and con t ro l   a r econs t r a inedby   d i f f e ren t i a l  
equations  plus  algebraic  equations and i n e q u a l i t i e s ;   L e .  

3 
3 

a = l,..., r 

a = r+l, ..., s. 

This  description w i l l  be appropriately  modified in the  formal  treatment 
of the  following  section. 

With t h i s  concept  of a branch,  a  branched t r a j ec to ry  E,  may be 
described  as a s e t  of m branches whose endpoints   sat isfy a s e t  of 
boundary conditions, 

ge[x (a 1, a', x (b ),bl ,..., x (a ) ,a ,x (b ),bml = 0. 1 1  1 1  m m  m m m  

Among those  branched  trajectories,  E ,  one  which minimizes  a  performance 
function 

J = g o [ x  (a ) , a  ,x (b ,bl,. . ,x (a >,a ,x (b  ),bml 1 1  1 1 1  m m  m m m  
i 

m bJ 

i s  ca l led  a minimal branched t r a j ec to ry ,  Eo. 

Optimal  branched t r a j e c t o r i e s  might bes t  be characterized as 
belonging to   the  larger   c lass   of   discont inuous  var ia t ional  problems. 
For th i s   reason  a brief  sketch of the   ear ly   h i s tory  of  such  problems 
is in order. 

As e a r l y   a s  1906 Bliss and Mason ( r e f .  1) considered a Lagrange- 
type  problem in the  calculus of va r i a t ions   fo r  which the  integrand 
experiences a f in i t e   d i scon t inu i ty  on a given  curve. Such a problem is 
encountered i n  the  invest igat ion of  l i g h t  rays in a medium having 
refracting  surfaces.   Generalizations of this problem  were presented 
by Roos ( re f .  2) in 1929 and Graves ( re f .  3 )  in 1930. 

3 



Perhaps t h e  first so lu t ion  which could  properly  be  called an 
o p t i m l  branched t r a j ec to ry  was given by S inc la i r  (ref. 4) in 1 9 9 .  
She examined a soap  bubble  problem f o r  which the   so lu t ion  i s  made up 
of  three  surfaces of revolution whose generating  curves are connected 
at a common point.  T h i s  example w i l l  be  discussed i n  a later section. 

The transformation t o  be used i n  converting  the  branched tra- 
j e c t o r y   t o  a conventional Bolza form was used  by Denbow (ref. 5 )  . in  
1937 f o r  a continuous  Bolza  problem  with  intermediate  boundary  condi- 
t ions .  The same transformation was used i n  1930 by Hestenes (ref. 6) 
t o  convert a problem  with free f inal   value  for   the  independent   var iable  
t o  one of  the  f ixed  type.  

The resul ts   of  Denbow have recently  been  revised by H u n t  and 
Andrus ( r e f .  7) t o  account for   f ixed   d i scont inui t ies  at t h e   i n t e r -  
mediate  boundaries and by Mason, Dickerson and Smith ( r e f .  8) t o  
account  for  variable o r  func t iona l   d i scont inui t ies .  Also, Boyce and 
Linnstaedter ( r e f .  9 )  have revised  Hunt 's   resul ts   for   control  problems 
wi th  inequal i ty   constraints .  A l l  of  these works (refs. 5, 7, 8, and 9) 
were summarized and reviewed by Burns (ref.  10). 

The reasons  for  using  the  transformation  approach  both  in  the 
past  and f o r  branched t r a j e c t o r i e s  are the  same. The transformation 
is  conceptually  simple i n  comparison  with a l l  the   i n t r i cac i e s   o f  a 
complete var ia t ional   t reatment .  Once the  problem has undergone the  
transformation a rather conplete set of necessary  conditions i s  readi ly  
available.  On the  other  hand, i f  a heurist ic  approach is desirable,  
then it is  advisable t o   a t t a c k   t h e  branched t r a j ec to ry  problem d i r ec t ly  
with classical   var ia t ions;   such a treatment was per fo rEd  by Vincent 
(ref. 11). 

Those aerospace  trajectory problems examined i n   t h i s   s t u d y  by no 
m e a n s  exhaus ts   the   u t i l i ty   o f  optimal branched t r a j e c t o r i e s .  However, 
they  are  considered  to be typical   of   the   expected f i ture  applications.  
Par t icu lar  acknowledgement must be given t o  W. D. Dickerson  and D. B. 
Smith of TRW Systems Group for the i r   cont r ibu t ions  t o  many aspects of 
this study and for   the i r   deve lopmnt   o f   the   t e rmina l   a i rc raf t  t raff ic  
control  problem. 
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2.0 SOME NECESSAKY  CONDITIONS 

The more conventional form of deteministic  optimal  control  problems, 
r e f e r r e d   t o  as the  "ordinary differential" type by Warga (ref.=),  con- 
s t i t u t e s   t h e   b a s i s   f o r  many of  the  recent developments i n  mathematical 
control  theory. The usual state and control   var iables   for   such problems 
are  defined on a closed time i n t e r v a l  and re la ted  on t h a t  interval by a 
s e t  of d i f f e r e n t i a l  and algebraic  equations.  Unfortunately, many 
appl icat ions,   especial ly   in   the  f ie ld   of   aerospace  t ra jectorg optimiza- 
t ion ,   a re   no t  easily t rea ted  as a conventional form. 

For example, consider  the  optimal  steering of a multi-stage  rocket 
which has   the  capabi l i ty   of   separat ing  into  several   se l f -propel led  s tages  
each  proceeding  independently t o  accomplish i t s  own mission. The per- 
formance  of  each  mission may depend not  only on the   s teer ing  program 
but   a lso on the  locat ion  in   s ta te- t ime  space  of   the  separat ion  point .  
For the  purposes  of this paper   the  t ra jectory  of  each s tage will be 
referred t o  as a branch  and t h e  composite  of a l l  branches will be cal led 
a branched t ra jec tory .  

This work presents a generalization  of  conventional results t o   t h e  
case of  optimal  control problems made up of  several  branches which 
themselves  are  unrelated  except  through  boundaq-  conditions and a s ingle  
performance  function. The approach  taken  here t o   e s t a b l i s h  a useful 
set  of  necessary  conditions i s  to   t ransform  the  mult iple   branches  into 
a conventional form  which Hestenes  (ref. 13) c a l l s  a general  control 
problem o f  Bolza.  This  technique i s  a modification  of  the work by 
Denbow ( ref .  5 )  and others.   Since  necessary  conditions  for  the conven- 
t i ona l  problem are   wel l  known, the  remaining  task i s  merely one of 
inverting  the  transformation  thereby  carrying  the  necessary  conditions 
into  the  multiple-branch  format. 

PROBLEM FORMULATION. Let a', b j  be a pair  of  parameters  such  that 

b j > a j ,  j = 1 ,  ..., m. 

L e t  

x j ( t ) ,  a j  t b j  , 
be an n-dimensional  continuous state vector and 

a j 't S 

a q-dimensional  piecewise  continuous  control  vector. The superscript  j ,  
denotes  the  branch;  e.g. 
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x2 = [x;, x2, ..., x23 n 
2 

i s  t h e  state vector on t h e  second  branch. 

Let 

f j [ x j ( t ) ,   U j ( t ) ,  t]  

be  an  n-dimensional  vector  valued  function, 

an  s-dimensional  vector  valued  function, and 

*O j [ x j ( t ) ,   u j ( t ) ,  t] 

a scala?  function  with a l l  of these  funct ions  of   c lass  C’ on a region R j  
of  xj-uJ-t  Euclidean  (n+q+l) - space  (see ref. 13) .  

A branch, E’, i s  defined as t h e   p a i r  of  parameters a j , b j  and  func- 
t i o n s  

x j ( t )   , u j ( t )  

sa t i s ry ing   d i f fe ren t ia l   equa t ions   o f   the  form 

and re la t ions  
. .  

(2.2) +Cl j [x J ,uJ , t l  = 0 a = 1, ..., r 
and 

(2.3) 4aJ[x ,u , t l  0 ‘ j j  a = r+l, ..., s 

which define R o j  C R j .  

The func t ions   6 ’ [dyu’ , t ]   a re   fur ther   res t r ic ted   to   those   func t ions  
f o r  which the  matr ices  

(5) a = Ul, ..., a 
d j 

k = 1, ..., q 
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have  rank d j a t  points z j , E j , E  i n  R o j  where y', . . . , u a re   t he   i nd ices  
on t h e  range 1, ..., s f o r  which d j 

This r e s t r i c t ion   i n su res   t ha t  each of equations (2.5) determines one 
component of  the  control  vector.  

t he   s e t   o f  a l l  a J  and b t h e  set of a l l   b j ,  9 = 1, . . . , m. Also l e t  
go[xa,q,a,b]be a salar   funct ion and g[xa,xb,a,b] be a pdimensional 
vector  valued  function. These functions  are  defined on a domain B which 
i s  a subset  of (2mn+&)-dimensiona1 Euclidean  space and p < (2mn + 2m). 

. . .  
Let xa represent   the set of a l l  x J (a J ) ,  x t h e  set of a l l  x (b ) , a j j  

A branched t r a j ec to ry ,  E ,  may now be  defined as a set of m branches 
whose endpoin ts   sa t i s fy   the  boundary conditions 

(2.6) gtxa,%,a,bl  = 0. 

Among a l l   p o s s i b l e  branched t r a j e c t o r i e s ,  E, one  which minimizes 

m b j  

i s  cal led a minimal branched t r a j ec to ry  and denoted by E . 
0 

For purposes of analysis   the  previous  def ini t ions will be  modified 
t o  include only functions go and g which a re  of c l a s s  C 1  i n  a neighbor- 
hood o f  the   va lues   xa ,%,a ,b   per ta in ing   to  Eo. 

An optimal  cortrol  problem with  multiple  branches i s  t h a t  of f inding 
a minimal branched t r a j ec to ry ,  Eo, as defined  above. Only cer ta in  
necessary  conditions  for Eo will be  established  here. 

THE TRANSFORMATION. In order  to  obtain  minimizing  conditions fo r  
t h e  above  problem a transformation  (ref. 5 )  will be  applied t o  convert 
t h e  m-branch  problem t o  a conventional  single-branch  control problem of 
Bolza (ref .  13). On the  j- th  branch change the  independent  variable 
from t t o  T according t o   t h e   r e l a t i o n  

( 2 . 8 )  t = a j  + (bJ - a3) T aJ s t 5 bJ 
O S T s l .  

A5 shown in Figures 2 and 3 the  individual  branches  of a typ ica l  branched 
t r a j ec to ry  are defined  over  different  intervals  of  the  t-domain  but  they 
a r e  all defined  on  the  interval [O ,1] in the T-domain. 
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Figure 2 .  Typical 4-Branch Trajectory in  State-t Space 

T 

Figure 3. Typical 4-Branch Trajectory  in Augmented 
State-T Space 
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In  order   to   main ta in  a  one-to-one re la t ionship  between t and T it is 
necessary  that  ad # bj.  T h i s  res t r ic t ion  rules   out   nul l   branches  as  ' 

possible components of Eo and cons t i tu tes  a severe  Umitation which 
must be taken  into  account   for  most appl icat ions.  

u j ( t ) ,   de f ined  on the  range  a? s t b j ,  respect ively become new variables  
y j (  T) and v j (  T) defined on t h e  range 0 T 1. Thus, applying  the 
transformatjCon successively  for  j =1, ..., m the  range  of  each  of  the 
m v e c t o r s   x J (   t )  and t h e  m vec to r s   u j ( t )  i s  mapped onto  the  closed 

Under t h e  change  of  inde  endent  -variable.  the  etate x 3 ( t )  and control  

i n t e r v a l  [ O , l  . The notation  y(T) will be  used t o  ind ica t e   t he  set of 
a l l   v e c t o r s  y (T), j = 1, . . . , m and, similarly, v ( t )  will be t h e   s e t  
vJ(T),  j =1, ..., m. 

The functions 

fjCxj ,uJ , t l  
are  transformed t o  

where the  a' and bJ appear now e x p l i c i t l y   i n   t h e  form dictated by 
equation  (2.8). The functions +J are   s imilar ly   t ransformed  to  $j so 
that relations  (2.1),   (2.2) and (2.3) become: 

- J 
L ! L  dT = (b  - a . )  h j j j j j  cy ,a ,b , v  ,T] j J  

(2.11) $aJ[y ,a , b  ,v ,TI s 0 * j j j j  a = r+l, ..., s 
Since t h e  parameters  a ,b now appear in   these  equat ions  they will be 
t reatedas  constant   s ta te   var iables ,   their   constancy  being  indicated by 
the   addi t iona l   d i f fe ren t ia l   equa t ions  

j j  

( 2.12) - =  da 0 dT 

and 

-I db 0. 
dT 

I 

Where the  parameters   a ,b   or iginal ly   appeared  in   the  funct ions g, 
and g, they will now appear a s   a (o ) ,b (o )  i n  keeping  with  their  new s ta tus .  
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as  state var iables .  This convention i s  a matter  of choice;  a(1)  could 
be  used i n  place of a (o)  , e tc .  Thus, the  values of a and b are  free 
except as constrailled by equations (2.14) below. 

become, under  the  transformation, - 

(2.14) gCy(0) ,Y(U , a ( d   , b ( o ) l  = 0 

The boundary  conditions (2.6) and the  performance  cri terion (2.7) 

3V has  rank 

m 
c = x d j  

j=1 
""- 

a t  poin ts   y ,a ,b ,v ,T   in  S with components y ,a ,b  , v  ,T sa t i s fy ing  
- j  -j -j - j  

0 

f o r  a = 
"I' * . * '  

SOME NECESSARY  CONDITIONS. A t r a j e c t o r y ,  E*, for  the  transformed 
problem i s  a (mn+2m)-dimensional continuous  state  vector,  z (  T )  3 y(T) , 
a(T) , b(T) , and an  (mq)-dimensional  piecewise  continuous  control  vector, 
v(T), which sa t i s fy   r e l a t ions  (2.9) through (2.13) and whose endpoints 
sat isfy  equat ions (2.U). A minimal t r a j ec to ry ,  EO++ (with components 
zo(T)  ,vo(T) 1 , for  the  transformed problem i s  one of   the E++ which 
minimizes I. Necessary  conditions  for a minimal t r a j ec to ry  EO++ have 
been  established by Hestenes  (ref. 13) and will be stated  here  without 
proof. 

Theorem 1. Let Eo* be a minimal trajectory  for   the  t ransformed 
problem just   descr ibed.  There exist mul t ip l ie rs  ho 2 0 and 
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(j=l, ..., m; i = l ,  ..., n; u = l ,  

not  vanishing  simultaneously,  and  functions 
* 

(2.17) 

m 

..., s; e = 1, ..., p) 

- aj) K j 
j=1 

and 

(2.18) F[ Z (  0) ,2(1)]= AogJ do) ,y(l) ,a\  ,b(o)l+ E gLY(0) ,y(l) ,a(o> ,b(o) 1 
such  that 

(i) The  multipliers MQT) are  piecewise  continuous  on o s T s 1 
and  are  continuous  at  each  point of continuity of voj(T). Moreover, 

MU 
J(T) 2 o (r+l s a s)  

with  MuJ(T) = 0 at  each  value of T at which 

(ii) The  multipliers h ( T )  , ra(T)  and r (T) are  continuous  and  have b 
piecewise  continuous  derivatives while the  functions 

zo(T)  ,vo(T>  ,A(T)  ,M(T) 

satisfy  the Ner-Lagrange equations 

I 

i=l 
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(2.21) 

(2.22) 

(2.26) 

db 
dT 
- =  K ’ b = O  

r 

KJ. = O  
VJ 

- dKj 
dT = KT j J = 1, ..., m 

on  each  interval of continuity of v0j(T). The  functions 

are  continuous  on 0 5 T 5 1 and the  transversality  condition 

(2 27) dF + [Aj(T) dyj(T) + Ta(T) da(T) + rb(T) db(T)IT4 = 0 
T=l 

* 
holds on Eo for all dz(o)  and  dz(1). 

(iii) The  inequality 

(2.28) K[zo(T),~,A(T),O,Tl  K[zo(T),vo(T),A(T>,o,Tl 

holds  for all (zo(T),v,T) in So.  

This  Theorem in its  present  form  could  be  used  to  investigate 
solutions of branched  trajectory  problems  directly.  However,  due  to 
the  large  dimensionality  of  the  transformed  problem i.t seems  reasonable 
to  invert  the  transformation  thereby  obtaining a corollary  of  Theorem 1 
given in terms  of  the  original  problem  statement. 

Since  each  function  of T in Theorem 1 carries  (perhaps  implicitly) 
an index j , it  is  possible  to  apply  the  inverse  of ( 2 . 8 )  for  each v 
of j on  the  range 1, ..., m.  Under  this  operatjon  the  multipliers A Ye (T) 
become  hJ(t) and the  multi  liers  MJ(T)  become  pJ(t).  Therefore,  the 
functions  defined  by (2.16 P and (2.18) become 
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and 

* 
A minimal trajectory, Eo , becomes a minimal branched  trajectory, 

Eo , whose  branches, EoJ, have  components 

' j sbo j and  xoj(t),uoj(t) on  aoj s t s bo'. 

Condition (i) of  Thevrem 1 implies  that  the  multipliers pJ (t ) are 
piecewise  continuous on  aoJ 5 t boJ  and  are  continuous  at  each  point 
of continuity  of uoJ (t ) . Moreover, 

pa j(t> 2 o (r+l 5 a 5 s )  

with 

p,j(t) = 0 

at  each  value  of t at  which 

j(t),tl < 0. 

Equations (2 .19) ,   (2 .22) ,   (2 .25)  and (2.26) of  condition (ii) are 
readily  transformed  to: 

(2 .34)  HJ = Ht j 

Equations (2.20) and (2.21) merely  express  the  constancy of a and 
b and need  not  be  transformed  explicitly. 

By making some  observations  equations (2.23) and (2.243 c y  be 
integrated  immedia ely. Due  to  the  specific  appearance of a ,b  and T 
in the  functions K s. 
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and 

(bj - aj) K j  . = TK;. 
bJ 

Now, taking (2.26) into  account  equation (2.23) can be written  as 

or 

Similarly, equation (2.24) leads to 

(2.36) r .  (1) = r .  ( 0 )  - ~ j ( 1 ) .  
b b 

J J 

The  boundary  values fcr ra and  are  determined by the  trans- b 

versality  condition (2.27). 

r ( 0 )  = - a d o  1 
a aF 

Combining  these  results  with  equations (2.35) and (2.36) and  usin: 

HJ (aJ 
. .  

to  represent 

Hj[xj(aj),uJ(aJ),aj], 
. .  

(2.37) 

and 
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- Hj(bj) = 0. 
abj  

The  remaining  information  contained in the  transversality  condition 

for  condition (iii) inequality (2 .28)  must  hold for all 
points  zo(T),v,T in So.  Hence, it must hold-for  the  choice 

v J voJ(T) for j = 1, . . , k-1, k+l, .. * ,  9. 

Since  bj ? aj , inequality ( 2 . 2 8 )  implies that 

(2.w) HJ[xo’(t),u j 3  ,A (t),O,t] 5 H’rxoj(t),uO’(t),,’(t),O,t~ 

must hold  for all points 

xO j(t),uj,t in RoS. 

The preceding mmipulations of Theorem 1 are summarized below for 
convenience. 

Theorem 1-A. Let E be & minimrl brulched  trr3rctory. There 
exist  multipliers ho 2 o &XI 

*. 
1. e. , there d a t s  no parameter 0 on 0 S u S 1 such  that, if crj = a j  + 
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(a. ) The  multipliers  paj(t)  are  piecewise  continuous on  a j 5 t 
0 

S boJ and  are  continuous  at  each  point  of  continuity of uoj (t). Moreover, 

p:(t) 2 0 (r+l a 5 s) with p:(t) = 0 

at  each  value  of  t  at  which 

+$xoj(t),  uoj(t),tl < 0. 

(b. ) The  multipliers  hJ(t)  are  continuous  and  have  piecewise 

continuous  derivatives.  The  functions 

satisfy  equations (2.31) through (2.34.) on each  interval  of  continuity 

of uoj (t 1. The  functions 

Hj[xoj(t),uoj(t),hj(t),pj(t),t~ 

are  continuous  on  a  j t S bo’. In addition,  equations (2.37) through 

(2.40) hold  on Eo. 
0 

(c.) Inequality (2.U) holds  for all points  xoj(t),uj,t in Ro j , 

j = l,.. ., m. 
For  the  problem  considered  above  each  branch  possesses  the  same 

number  of  state  variables, an equal  number  of  inequality  constraints, 
etc.  However,  Theorem 1 and  its  corollary  would  remain  essentially 
unchanged if the  state  vector  or  control  vector  or  the +J vector 
functions  had  different  dimensions  on  each  branch.  This  flexibility 
permits an efficient  model  to  be  used  for  problems  having  branches  of 
varying  degrees  of  complexity. 

BOUNDED STATE. In the  previous  definition  of  branched  trajectories 
only  those  algebraic  side  conditions, b ,  which  contained  the  control 
explicitly  were  permitted.  The  case  of  pure  state  bounds  is  somewhat 
different in character and therefore  will  be  given  special  attention 
here.  The  problem  formulation  and  derivation of necessary  conditions 
is sufficiently  close  to  that  required  for  the  bounded  state  case so 
only the  differences w i l l  be  pointed  out. 
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F i r s t ,  i n  t h e  problem  statemenj  the  region R j  i s  modified t o  
include o n l y  the  set   of  elements (x ,uJ ,t) such &at (see  Figure 4) 

b,j[xj,tl 0 a =  1, “ . , S  

A state-bo:mded 

a j  bj  

and vector  functions 

branch, E’, i s  defined as the  pair  of  parameters 

x j ( t ) ,  u j ( t )  

sat isfying  different ia l   equat ions  (2 .1)  and relations  (2.42).  

With t h i s   d e f i n i t i o n  of EJ a state-bounded  branched t r a j ec to ry ,  E ,  
- 

i s  defined as a se t   o f  m state-bounded  branches  which s a t i s f y   t h e  
boundary conditions (2.6). 

Among all possible  state-bounded  branched  trajectories, E ,  one 
- 

which  minimizes the performance  index ( 2 . 7 ) i s   c a l l e d  a minimal s ta te -  
bounded branched  trajectory and  denoted by Eo. 

Once again  the  l inear   t ransformation (2.8) i s  applied on  each 
branch mapping each  branch on the   i n t e rva l  6TS1. Each par t  of the  
problem transforms as before  except  that ,   since  equations (2.2-3) have 
been replaced by (2.42),  the  expressions (2.10-11) must be replaced by 

(2.43)  +i[yj,aj,bj,T] 5 0 j = 1, ..., m 
a = l  , . . . , s .  

The transformed problem i s  now a conventional  (single-branch), 
f ixed   in te rva l  (osTS1) optimal  control  problem  with bounded s t a t e .  
Necessary  conditions  for a very similar problem are  given by Hestenes 
( re f .  13, page 354). The following i s  a modification  of  Hestenes’ 
results  ( the  modification  merely  accounts for the  variable  terminal 
s t a t e s ) .  

To account   for   the   e f fec t   o f   the   s ta te  bounds on the   var ia t ions  
of  the end points  of  the  trajectory  the  following  additional boundary 
conditions must be  introduced. 
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BOUNDARY 
FOR  BRANCH 2 / .'.  

No te :   Branch 1 te rm ina tes   on   i t s   boundary ;   b ranch  2 begins  on 
branch 1 boundary,  passes  through  the  branch 1 r e s t r i c t e d  
zone, i n t e r s e c t s  and  leaves  the  branch 2 boundary;  branch 
3 s t a r t s  on the   b ranch 1 boundary  and  never  encounters 
the   b ranch 3 boundary. 

F igu re  4 ,  B ranched   T ra jec to ry   w i th   S ta te  Bounds 
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I 

(j=1, . . . ,m; i=l, . . . ,n; a=1, ..., s ; e=l, . . . , p +  a s )  

and  functions 

(2.47) K[Z ,v,A,M,T] = C (bj- a') Kj 
m 

j =1 
and 

such  that 

(i) The  multipliers  MJ(T)  are  piecewise  continuous  and  the  multi- 
pliers 

A(T),T  a(T),  b(T> 

are  continuous  and  have  piecewise  continuous  derivatives  on 0 5 T S 1 
and  satisfy  with 

Zo(T), v o w  

the Ner-Lagrange equations (2.19-26) on  each  interval of continuity 
of  voJ (T). The  functions 

Kj[yoj(T),aoj(T>,bo j(T>,A j(T>,Mj(T>,T] 

are contigys on 0 5 T S 1 and  the  transversality  condition (2.27) 
holds on Eo for all dx(o) , d z ( l )  ,dy and  dB. 

(ii) The  inequality (2.49) holds  for a l l  (z0(T),v,T) in So where 
So is defined  by  relations (2.43). 

(2.49) K[Z0(T),v,h(T),M(T),T] KIZo(T),vo(T),A(T),M(T),T] 

(iii) For  each  pair  of  indicies a, j the  multiplier 

M~<T) O S T s l  
is nonincreasing and is constant  on  every  interval on which 
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is  discontinuous. 

( i v )  A t  no point T on 0 S T 5 1 are   t he   mu l t ip l i e r s  

of the form 

where C is any ms-dimensional  constant  vector. 

The process of  inverting  the  transformation i s  the  same as before 
and w i l l  not be repeated  here.   Instead  only  the  result ing  necessary 
conditions w i l l  be given. 

Theroem 2-A. Let E be  a  state-bounded  branched  trajectory. 
There ex i s t   mu l t ip l i e r s  go 2 0 and 

. .  

( j  = 1,. . . ,m; i = l,.. . ,n; a = 1,. . . ,s; e = 1,. .. , p + h s )  

and functions (2.29) and (2.30) such that on aJ 5 t S b j f o r  3-1, .. . ,m 
. ( a ) .  The mul t ip l ie rs  h j ( t )  are  continuous and s a t i s f y  with 

x i ( t ) ,   u i ( t )   t h e   e q u a t i o n s  

(2.51) = Hjj 
h 

(2 .52 )  >;j = - I..+ 

(2.53) H3 = 0 

X j 

U j 
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are  continuous. The equations 

a re   s a t i s f i ed  along with 

(2.60) 

(b )  The inequal i ty  

H’[~o’(t)yu~y~~(t)y~’(t),t] s, H’~xo~(t),uo~(t),k(t),~~(t),t~ 

holds f o r  all uj such tha t  (xo’(t) , u j  , t) i s  in Roj . 
(e ) For each  index a , the   mul t ip l ie r  paJ ( t  > i s  nonincreasing 

and i s  constant  on  every  interval  on which 

b ~ C x , j ( t ) , t l  < 0.  

d t  @;I 

It i s  continuous where uoJ (t ) i s  continuous and a t  every  point a t  which 

i s  discontinuous. 

(d)  A t  no point t are   the   mul t ip l ie rs  X , , A j ( t )  of t he  form 

ho = 0 
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where  d is any s-dimensional  constant  vector. 

It should  be  noted  that   the  transversali ty  equations of Theorem 
2-A d i f f e r  from  those  of Theorem 1-A because  of  the  difference i n  the  
def ini t ions  of  G. For Theorem 1-A 

P 
G = hogo + egl Eege 

but   for  Theorem 2-A 
p + h s  

G E h g  + o o e& 'ege 

where the  last (2ms) of the  functions,   ge,   are  defined by (2.44-45). 
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3 .o SOME GEOMETFUC -LE 

I n   o r d e r   t o  become familiar with a new technique it i s  usual ly  
h e l p f u l   t o  try that  technique on a simple  problem  which  has  already 
been  solved.  Unfortunately, most aerospace  applications  are so complex 
that  they  cannot  be  solved in closed form. For that   reason two non- 
aerospace  problems,  basically  geometric in nature,  have  been  chosen t o  
display  the  branched  trajectory  concept. 

As mentioned e a r l i e r   t h e  first example of  an  optimal  branched 
t r a j ec to ry  was probably  given  by Mary S inc la i r   ( r e f .  4) i n  1909. Rather 
than  developing a general   format  for  branched  trajectories,  Miss S i n c l a i r  
d i r e c t l y  examined a soap  bubble  problem  which  happens t o  f a l l  under 
the  category of branched t r a j ec to r i e s .  

The  more familiar soap  bubble  problem i s  that   of   f inding a curve 
connecting two given  points in the  x-y plane and on the  same s ide of 
the  y-axis  such  that   the  surface of revolution of the  curve  about  the 
y-axis i s  a minimum. The resul t ing  solut ion shown in Figure 5 i s  a 
catenary  connecting  the  given  points Ao,Al. It has  been  observed t h a t  
soap  bubbles under certain  circumstances  lndeed do assume the shape  of 
a catenary of revolution. The s o l u t i o n   t o   t h i s  problem may be obtained 
with  conventional  optimal  control  techniques. 

Miss Sinclair ' s   soap  bubble   differs   s l ight ly   f rom  the form j u s t  
described. It may be  described as a surface of revolution  generated by 
rotating  three  curves  (labeled  branches 1, 2 and 3 i n  Figure 6 )  about a 
given a x i s .  These three  curves as shown in Figure 6 are  joined a t  
point A . One curve  terminates a t   t h e  y-axis and one each a t  the  given 
points 2 , A1. The points  A. and the  coordinate Yo are   f ree .  The 
optimization  problem i s  t h a t  of  determining  the  three  curves  described 
above such tha t   the   sur face  of revolution  generated by rotat ing  these 
curves  about  the  y-axis i s  a minimum. 

I n  control  (and  branch)  notation  the problem  can  be s ta ted  as 

(where J i s  the  area of  the  surface of revolution  divided by 2rr) 

sub5ect t o   t he   d i f f e ren t i a l   equa t ion  

and the  boundary  conditions 
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Figure 5.  Single Arc Soap Bubble  Problem 

X-AX1 S 

Figure 6. Branched Soap Bubble  Problem 
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1 g l = a  = O  

On the  j-th  branch  the  variational  Hamiltonian as defined by (2.29) 
is 

(3  012) HJ = hj t a n   u j  - x sec  u 

so the  Ner-Lagrange  equations  (eqn. 2.32-33) a re  

j 

(3  013) i j  = 0 

and 

(3.3-4) hj   sec2   u j  - x s e c   u j   t a n   u j  = 0. 

The first of  these  equations  implies that hJ = constant   for  j = 1, 
2,3.  Since  the  secant  function i s  never  zero  the  control  equation 
implies 

(3.15) hJ = x  s i n u  j j = 1,2,3* 

Making this subs t i tu t ion  in (3.12) y i e lds  

(3.16) HJ f - X COS u j 3 = 1,2,3.  

Because g 0 f o r   t h i s  problem the  funct ion G as defined by 
equation (2.309 is 
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and transversality conditions (2.37-40) are f o r  j=1 : 

+ H ( a ) = O  1 1  
El 

1 1  
- E ~  - E~ - H (b ) = 0 

- h ( a ) = ~  1 1  

-&3 - &5 + h (b ) = O  1 1  

f o r  j = 2 : 

+ H ( a ) = O  2 2  
&2 

€6 - H (b ) = O  2 2  

- h (b ) = O  2 2  

+ h ( b ) = O  2 2  

for j = 3 : 

E ~ + H ( ~ ) - O  3 3 -  

E ~ - H ( ~ ) - O  3 3 -  

&5 

&9 

- h ( a ) - O  3 3 -  

+ h3(b3) = 0 

Since  there  are  12 of these  equations and only 9 of the   mul t ip l ie rs ,  
E,  that leaves 3 independent  conditions. These may be  obtained by elimi- 
nating a l l  of the  E ' S .  

(3.18) h (a ) = O  
1 1  

h ( b ) = h ( a ) + h ( a )  1 1  2 2  3 3  

(3 20) H ( b ) = H ( a ) + H ( a )  
1 1  2 2  3 3  

Equations (3.13) and ( 3 . U ) ,  f o r  j = 1, together  with (3.18) imply 
t h a t  
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SO branch 1 i s  a line segment  parallel  to  the x axis and 

(3  023) y (t) E y (a ) = yo. 
1 1 1  

N OW, equation (3.19) indicates  that 

6 024) , - h  (t) A (t) 3 2 

and 

Equation (3.20) may be  written  as 

(3.26) 1 1 1  2 2 2  3 3 3  -b cos u (b ) = -a  cos u (a ) -a  cos u (a ) 

or 

Integrating (3 -21, for j = 2,3, and using the  appropriate  boundary 
values  leads  to  the find solution  which  has  been simplified for  the 
case % = €$ = R. 



(3  *35) 

where C s a t i s f i e s  

C = cosh[& + log (J3 )]. 
The solut ion of the  branched  soap  bubble  problem  consists of a 

l i n e  segment f o r  branch 1 and a catenary  for  each of  branches 2 and 3 .  
Apparently, none of the  branches  degenerate t o  zero  length as the  
parameters h and R take on increasing  positive  values. However, S inc la i r  
(ref.4) showsthat  the  three  branch  solution i s  not   s table  if any branch 
contains a conjugate  point (i .e ., fails to   sa t i s fy   Jacobi ’s   necessary  
condition). 

s t r a t e s  some of the   shor t  comings of the  theory i s  t h a t  of f inding 
the  shortest   path  consisting  of  three  branches and connecting  three 
points as shown in Figure 7 .  Without loss of  generali ty one point 
may be placed a t  the   o r ig in ,  one on the  posi t ive x-axis a uni t   d is tance 
from the   o r ig in  and a t h i r d  a t  a general  point  (h ,k) in the  first 
quadrant. 

A “JM DISTANCE PROBLEM. A very  simple example  which demon- 

The state 4, .xi on the  j-th  branch  evolves  according  to  the 
different ia l   equat lons - 
(3  037) ” dxil - cos u j ds  

” - sin u 3 
ds  3 = 1,%3 

where the   cont ro l  uj is  the  slope  of  the  path in 5 - 5 space. 

The performance c r i t e r i o n  i s  just the  sum of the  lengths  of  the 
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BRANCH POINT / 

Figure 7 .  Three Point Minimum Distance Problem 
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U s i n g  the  branch numbering from  figure 7, the  boundary conditions are: 

g l = a  = O  g s  = ~ ( b  3 ) - h = 0 

g 2 = a  = O  g9 = x2(b3) - k = 0 

g3 = a3 = o 2 1 

g4 
2 1 

3 1 

3 1 

1 

2 

glo= xl(a - 3 ( b  = 0 

gll= ?(a ) - x2(b = 0 

g12= xl(a - xl(b ) = 0 

1 
= xl(a ) = o 

g5 = 3 ( a 1 )  = o 
2 g6 = % ( b  ) - 1 = 0 g13= 3 ( a  - x2(b 1 = 0 

g7 
z = ?(b ) = 0 

This  completes  the problem statement. The H function on each  subarc i s  

(3.40) H j  = $ cos u j  + h j  sin u j  - 1 

Applying the Euler-Lagrange  equations  determines  that $ and a re  

constant,  j = 1,2 ,3 ,  and t h a t  

2 j = 1 ,2 ,3  

j 

j 
(3 .41)   t an   u j  = 2 j = l , 2 , 3 .  

Applying  equations  (2.38) shows t h a t  

(3.4-2) Hj(bj)  = 0 j = 1,2 ,3 .  

The remaining  transversali ty  conditions  eventually  lead  to  the 
r e s u l t  

(3.43 1 

and 

(3 .44> 1 2 3  h = A + h2. 2 2  

Equation  (3.42) along with  (2.34)  imply t h a t  

(3.45) q cos u j  + h i  sin U j  = 1. 

This  together  with  equation  (3.41) permit t he  following r e su l t .  
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(3.47) hJ = s i n u  j . 2 

Since 5 and hi  are constant  the  slope u' i s  constant and  each 
branch is  a ine  segment. It only remains t o  discover a t  what angles 
these  l ines   intersect .   Equat ions (3.43-47) ind ica t e   t ha t  

cos u1 = cos u2 + cos u 

sin u = sin u2 + sin u . 
3 

1 3 

These equat ions  are   sat isf ied by 

and 

That means that the  three  branches must i n t e r sec t  a t  120' with  respect 
t o  each  other.  Point B, the  branch  point must be located  such  that  
l ine segments connecting  point B with  each  of  the  points P1, P and 
P in t e r sec t  a t  U O 0 .  Obviously,  there exist some locat ions 03 point 9 such t h a t  no proper  branch  point may be chosen ( fo r  example,  take 
$= 1 and h = 100). In   these   ins tances ,   there   a re  no solut ions 
having  three  branches.  Instead a two branch  solution must be  used. 
This  type  of  degeneracy,  represents a rea l   obs tac le   to   the   numer ica l  
solut ion of complex branched t r a j ec to ry  problems. If t tphysical   insight t t  
does  not  dictate  the  correct number of  branches,  considerable  time 
could be wasted in attempting t o   o b t a i n  a solut ion which does  not  exist. 

Figure 8 shows the  locus of  branch  points  for k = 1 and h increas- 
ing from 1/2 t o  (1 + & / 3 ) .  As h approaches  the  value (1 + Jj/ 3) 
the  branch  point  approaches P w-d the  second  branch  degenerates t o  
zero  length. A t  this point tge analysis falls apa r t  and f o r   g r e a t e r  
value  of h a three  branch  solution  does  not exist. O f  course one may 
s t i l l  look f o r  two branch  solutions. 

The procedure  used  above was t o  apply Theorem 1-A d i r e c t l y   t o   t h e  
o r ig ina l  problem  formulation. It was not  necessary t o  transform  the 
o r ig ina l  problem  because Theorem 1-A i s  stated i n  terns of  branched 
t r a j ec to r i e s .  However, the alternate  procedure  of transforming t he  
o r ig ina l  problem t o   t h e  format  of  conventional  optimal  control  and 
solving that problem  by  applying Theorem 1 msy be both   ins t ruc t iona l  and 
p r a c t i c a l   f o r  some numerical schemes. "his latter approach is briefly 
sketched below for   the  previous m i n i m u m  distance example. 
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Figure 8. Locus o f  Branch Points 
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On each of the  three  branches  replace S as the  independent  variable 
by T according t o   t h e   r e l a t i o n  

(3.48) S = a3 + (b3 - a')T O s T s l  
3 = L2,3  

Now, following the  same notat ion used i n   s e c t i o n  2, equations (3.37- 
3.38) become 

4 

(3 -49) 

(3 -50)  

QIJ 
'dT, = (b' - a ' ) cos  v 3 

dY2 3 

dT = (b j  - a 3 ) s i n   v  3 

The performance c r i t e r i o n  (3.39) transforms  into 
1 

(3.51) 1 E /-(b' - a3)dT 
j =1 0 

Since  the a ' s  and 
add i t iona l   d i f f e ren t i a l  

j 

da j 
dT (3 .52 )  - = 0 

bj ' s  will be t r ea t ed   a s   s t a t e   va r i ab le s ,   s ix  
equations must be included. 

The boundary.conditions  g  through g r e m i n  unchanged except   for  
replacing  aJ by a J ( 0 )   i n  gl, g2, and g . 4 h e   v a r i a t i o n a l  Hamiltonian 
for  the  transformed problem is  given  b3 (2.17). 

1 

(3.54) K = 2 (b  3 - a j )d  
j =I 

where K 3 I I\: COS v j + $3 s i n   v  3 - x, 
Application of the  necessary  conditions .of Theorem 1 t o   t h i s  

formulation  results i n  t h e  same solut ion 88 tbat obtained by using 
Theorem L A  d i r ec t ly .  This example was  also  discussed by Mason 
(ref. 14). 



4.0 - AJECSPACE APPLICATIONS 

In   o rde r   t o   eva lua te   t he  u t i l i t y  of  optimal  branched  trajectories 
with  respect   to   t ra jectory  design and guidance  development,  five  areas 
were examined.  These are: (1) the   t ra jec tory   des ign   for   mul t ip le  pay- 
load  launch  vehicles; (2) the  inclusion of optimal  staging  techniques 
i n  the  foregoing example; ( 3 )  the   t ra jec tory   des ign  f o r  secondary or 
abort ,   mission  optimization; (4) branching  lander/orbiter  type  space 
maneuvers  such as those   ava i lab le   to   the  lunar module (LM) and control- 
service module (CSM) of  the  Apollo  project; and (5)  a i r  t r a f f i c   t e rmina l  
control.  Some numerical   results Were obtained  for  problems (l), ( 3 )  
and ( 4 ) ;  t h i s   d a t a  i s  presented in sec t ion  5.0. 

MULTIPLE PAYLOAD LAUNCHES. The m i s s i o n   p r o f i l e s   f o r   t h i s  example 
are  sketched in Figure 9.  Two payloads  are  to be inser ted   in to  two 
separate  orbits.   In  the  conventional  approach  (represented by t h e  
dashed l i n e  in Figure 9) two opt imal   t ra jec tor ies   a re  computed separately,  
the f irst  s t a r t i n g  a t  t h e   i n i t i a l   p o i n t  and ending a t  the  required 
o r b i t   f o r  payload number 1 and the  second s t a r t i n g  in t h a t   o r b i t  and 
proceeding t o  payload number 2's o r b i t .   I n   t h e  branched  case  the 
vehicle   separates   into two par t s   p r ior   to   reaching   t .he  first o r b i t .  

The equations of  motion t o  be  used f o r   t h i s  example include on ly  
the   effects   of   inverse   square  gravi ty  in two dimensions. 

v = - c o s  8 - 5 sin y . T  
m r 

(4.4) i = r cos y 

(4.5) A = -  B 

The state var iab les   v ,  Y, r ,  4 and m are   def ined as the  modulus o f  
veloci ty ,   the   f l ight   path  angle   referenced  to   the  local   hor izontal ,  
t he  radial  dis tance from the   cen t r a l  body, the  range  angle and the  
mass respectively.  The control   var iable  8 i s  the  angle  of  at tack 
(or the   angle  between the  veloci ty   and  thrust   vectors) .  The remaining 
parameters, T ,  B and p,  are  the  thrust   magnitude, mass f low  ra te  and 
the  gravitational  parameter.   Superscripts  indicating  branch number 
w i l l  not be  used s ince  the same equations,  except for parametric 
changes,  apply t o  each  branch and l i t t l e   p o s s i b i l i t y   f o r   c o n f u s i o n  
will a r i se .  
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Figure 9. Mission  Profile for Two Payload Launch 
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Although some of the  problem  boundary  conditions are quite  obvious 
and can be app l i ed   t r i v i a l ly ,   t he  complete s e t  w i l l  be s ta ted .  The 
boundary conditions  defining  the  f ixed initial s t a t e  and  time  of 
branch 1 are  

1 g l = a  = O  

1 
g2 = v(a ) - v1 = O 

1 g3 = v(a - y1 = 0 

g4 = r ( a  1 - rl = o 1 

1 g6 = m ( a  ) - "1 = 0. 

Branch 2 i s  t ta t tachedf t   to   the  end of  branch 1 by equating  appropriate 
var iables .  

g 7 = a  - b  = O  
2 1  

2 1 gg = v(a ) - v(b ) = 0 

2 1 gl0= r (a  ) - r ( b  ) = 0 

= m(a3) + m(a - m(b ) + A? = 0 612 
2 1 

where Aml i s  the   spec i f i ed   s t ruc tu ra l  mass of t h e  first stage.  
Similarly,  branch 3 is attached t o  branch 1 
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gl,+= v(a 3 ) - v(b 1 ) = 0 

g15 = y(a ) - y(b ) = 0 3 ' 1  

g16' r(a 3 - r ( b  1 1 = 0' 

g17' +(a3) - b(bl, = 0 

Also, the  burn time f o r  branch 1 is f ixed,  

1 
g18' - t l = O  

and the initial mass f o r  branch 2 i s  specif ied 

g19= m(a 2 ) - mo = 0. 

The o r b i t  f o r  payload number 1 must be  defined by' boundary 
conditions. 

g20=  V(b 2 ) - v2 = 0 

= Y ( b )  2 = O  g21 

g22= r ( b  2 ) - r2 = 0 

The remaining boundary conditions  establish a c i r cu la r   o rb i t   f o r  
payload number 2. 
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With t h e  first payload  fixed  the  optimization i s  based  on maxi- 
mizing t h e  second  payload o r   f o r  a minimization problem 

J = go = +(b ). 3 

Other  formulations  such as fixing both  payloads and minimizing 
t h e  lift off  mass would be handled i n  a similar fashion. 

Applying Theorem 1-A of  section  2.0,   the  Ner-Lagrange  equations 
f o r   t h i s  problem a r e  

- h r sin y- Am($ cos Y) 

+ h + ( ' S i n  r Y) 

r y [ 2  - k] cos 

i m = h v ( 2  cos e + h (2) sin e 
Y m2v 

The control  equation  with  the  aid  of  the  Weierstrass E tes t  indicates  
t h a t  

where 

hy/y 
sin e = h 

h 

- A  cos e - - V 
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Applying  the  transversality  conditions  as in the  previous  examples 
leads  to  several  equations  linear in the  constant  multipliers E .  
Elimination of these  multipliers  yields  the  following  results. 

(4 J7 h (b“) = 0 

(4.18) H(b ) = 0 

(4.19) A (b3) = 0 

(4.20) H(b3) = 0 

4 
2 

b 

(4.21) hm(b 1 - 1 3 -  

Since  equation (4.9) applies  on all three  branches  then  equations 
(4.17), (4.19) and (4.15) imply  that 

h (t) = 0 4 

Stationary  solutions  are  obtained  by  satisfying  the Ner-Lagrange 
equations (4.6-8, 4.10) with  the  control  given  by (4.11) and  meeting 
the  terminal/corner  conditions (4.12-U, 4.16, 4.21). Since (4 .U)  is 
the  only  equation  which  is  not  homogeneous  with  respect  to  the  A-multi- 
pliers  it may be  ignored  allowing  the  remaining  equations  to  be  scaled 
by  some  constant. In other  words  the  initial  value  of  one of the 
multipliers may be  set  equal  to  unity. 

If a Newton-Raphson  iteration of unknown initial and branch  point 
values  (to  satisfy  terminal  conditions)  were  used,  then  the  order  of 
the  iteration  would  be  five.  The  guesses  might  include,  for  example, 

with 1 hv(a ) = 1. 
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The  first  two  guesses  establish  the  control  for  the  first  branch  and 
the  second  three  the  control for  the  third  branch.  Equations (4.12 -14) 
then  yield  the  values  of . 

so the  control  for  the  second  branch  is  also  established. 

For  this  two  dimensional  example  there  are  five  guesses. If the 
number of payloads (and therefore  the  number  of  branches)  were  increased 
to  a  total  of P, then  the  number  of  guesses  would  be 2 + 3 (P-1). So 
three  new  guesses  are  required  for  each  additional  payload. 

OFTIMAL STAGING.  The  formulation  of  optimal  branched  trajectories 
may also  be  used  to  determine  the  optimal  staging  for  the  multiple 
payload.  As in reference 8 let  the  structural  mass  for  each  stage  be 
proportional to  the  burn  time  of  that  stage.  Therefore,  the  structural 
mass to be  discarded  at  the  end of the  j-th  branch  is 

K . (bj-a' ) = structural  mass 
J 

The  formulation of the  previous  problem is unaltered  except for boundaly 
conditions  12,18,19,23  and  the  performance  function.  These  become 

3 2 1 1 1  

2 2 2  
g12 = m(a ) + m(a ) - m(b ) + Kl(b  -a ) = 0 

g23 = m(b ) - K2(b - a ) - m2 = 0 

J = g = m(b ) - 5(b3 - a ). 3 3 
0 

The  resulting  transversality  conditions  are  also  the  same  as  those  of 
the  previous  example  except  that (4.18) and (4.20) are  no  longer  valid 
and  some  additional  conditions  arise.  These  are 

(4.23 1 K.h (b') - H3(bJ) = 0 j = 1,2,3 
. .  

J m  
Equations (4.23) are  the  switching  functions  which may be  used  to 

terminate  the  burning  of  each  stage. 

A Newton-Raphson  iteration  for  this  staging  problem  would  involve 
seven  guesses. In addition  to  those  of  the  previous  example  it  would 
be  necessary  to  guess  two  additional  values  such as 

Also for  a P payload  problem  the  number  of  guesses  would  be 3 + 4(P-1). 
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SECONDARY  MISSION OPTIMIZATION. Complete mission  planning must 
include a secondary or   abor t   miss ion   to  be performed i n  the  event   the 
primary mission cannot  be  completed. When the  launch  vehicle   capabi l i ty  
exceeds that  required  for  the  primary  mission,  the  excess  propellant 
may be  used t o  shape  the  primary  mission  trajectory so that   the   per-  
formance of a secondary  mission i s  improved. 

The secondary  mission  optimization  problem  can be s t a t ed  most 
precisely  with  the  a id   of   Figure 10. .The  t ra jectory i s  divided  into 
three  parts  called  branches.  The f irst  branch  (arc OB) represents   the 
path  of  the first s tage  of   the  vehicle .  The a rc  BP represents   the  path 
of  the l as t  s tage and point P i s  the  orbi t   for   the  pr imary  mission.  If 
no fai lure   occurs ,   the   vehicle  w i l l  t ravel   a long  the  path OBP. If the  
las t  stage  has some malfunction a t  i g n i t i o n   o r  i f ,  f o r  some other  
reason,  the  primary  mission i s  unobtainable a t  point B ,  the   vehic le  
t r ave l s  along a r c  BS wi th   l e s s  than nominal thrust to   ach ieve  a 
secondary  mission a t  S. As an  example, in the  Apollo  mission i f  the  
S-IVB f a i l e d   t o   i g n i t e ,   s e r v i c e  module propulsion  could be  used on 
a rc  BS. The par t icu lar   po in t  B i s  chosen as the  most c r i t i c a l   p o i n t  
of t he   t r a j ec to ry  (due to   separa t ion ,   ign i t ion ,   e tc . ) .   Other   c r i t i ca l  
points  and their  associated  branches  could be included as long as the  
number of  branches i s  kept  reasonably small. The arc  OCP represents 
the  usual  optimal  trajectory  for  the  primary  mission  with no secondary 
considerations. 

The t ra jectory  opt imizat ion  consis ts   of   joint ly   shaping  the  three 
branches  such that  the  primary  mission  constraints a t  point P are 
satisfied and some performance c r i t e r i o n  i s  extremized a t  point S. 
A spec i f i c   o rb i t  i s  chosen for  the  secondary  mission and the  f inal  
mass in t h i s  o r b i t  i s  maximized. This  procedure  effectively maximizes 
the  propellant  remaining when the  vehicle   achieves  the  orbi t .  This 
propel lant   could  then  be  used  for   fur ther  maneuvering. 

Using Figure 10 as the   bas i s   fo r  symbology, branch numbers 1 (OB), 
2(BP) and 3 ( B )  are   ass igned  to   the  vehicle   configurat ion as follows: 

Branch Description 
1 trajectory  of  the  Saturn  S-I1  class  vehicle  carrying 

the  Saturn S-IVB, Lunar Excursion Module (L;EM) and 
Cormnand and Service Modules (CSM). 

2 t ra jec tory   o f   the  S-IVB carrying LEM and CSM 

3 abor t   t r a j ec to ry  (from  S-I1  burnout  conditions)  of  the 
CSM (the  loaded S-IVB and LEM are dropped fo r   abo r t  ) 

The equations  of  motion  governing  flight on  each  of the  branches 
are ident ica l   to   those   o f   the   p rev ious  examples  (equations 4.1-5 ). 
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The boundary  conditions  are  also  the same as those  for   the  mult i -  
ple  payload  case  except f o r  19. 

= m(a ) - m(b ) + Am2 = 0 2 1 
g19 

The resulting transversal i ty   condi t ions are given by equations (4.12- 
21 )  except   that  (4.16) becomes 

(4.24) 

Once again,   f ive  guesses   are   required  in   the  numerical   i terat ion 
procedure. 

Some ground rules  for  choosing 5,  t h e  primary  payload,  should  be 
observed. F i r s t ,  it was assumed tha t   there  exists some required 
payload % which includes a l l  necessary  propellant  reserves. With no 
branching ( i .  e. no secondary  mission  consideration)  the  vehicle  can 
produce a maximum payload II+, > %. This  establishes  an  upper bound . It i s  a l so  poss ib le   to   es tab l i sh  a lower bound by  computing 

imal (maximum payload)  trajectory  for  the  secondary  mission  with 
no consideration of  the  primary  mission.  That i s ,  assume t h a t   f a i l u r e  
w i l l  take  place a t  t h e  prescribed  point and compute an optimal two- 
branch t r a j ec to ry  u s i n g  branches 1 and 3 only.  (Figure 10). Now with 
the  branch  point  fixed compute an  optimal  branch 2 achieving a primary 
payload "2. This  procedure  establishes a maximum secondary  payload 
independent  of m2 and, therefore ,  a minimum prac t ica l   va lue   for  m 
Thus, in choosing m impose the  following bounds:  2' 

2 

y < m2 < mo. 

If 

mL "R < "0 
then l e t  m2 = % and i f  5 < % l e t  m2 = m L ,  Of course, if % > mo 
then  the  vehicle  i s  incapable  of  accomplishing i t s  primary  mission. 

LANDER/ORBITER MANEUVER. This  application i s  similar mathematically 
to   t he   mu l t ip l e  payload  launch  discussed earlier. I n  both  cases  the 
vehicle   physical ly   separates   into two par ts .  The only real difference 
is in the  set .of   terminal   condi t ions.  

As shown in Figure 11 the  optimization problem begins a t  an 
a rb i t r a ry  point on an  approach hy-perbola (point 0). The spacecraft ,  
which consists  of two s tages   re t ro- thrus ts   to   po in t  B where the  stages 
separate. After separation one stage  descends  to a landing  configura- 
t ion   (po in t  P) and the  other  stage  proceeds  to a circular  parking 
orbi t   (point  Q). On the  descent maneuver, a r c  BP, a coasting  arc CD 
i s  permitted. 
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Figure 11. Mission  Profi le  for Branched  Lander/Orbi t e r  Maneuver 

44 



Both t h e  approach  hyperbola and the   parking  orbi t   are   f ixed  but  
the  points  of  departure and ent ry  are f ree .  Also the   veloci ty   vector  
and a l t i t u d e  are spec i f ied   for   po in t  P but   the range is l e f t  free, 
The loca t ion  and time of the  branch  point (B) a r e  free as are   the  
loca t ion  and duration  of  the  coasting  arc CD. 

It i s  des i r ed   t o  find a minimal branched t ra jectory  of   the  type 
just   descr ibed  such  that  a fixed  payload i s  inser ted  into  the  parking 
o rb i t  and the  payload  placed in a landing configuration is maximized. 
Although the  branch  point  (B) i s  f r e e  no staging w i l l  be  performed. 
That i s ,  the  initial mass on the  descent  arc (BP) i s  prescribed. 

Once again  equations (4.1-5) w i l l  be  used to   r ep resen t   t he  motion 
on each  branch. With the  branch numbering as given in Figure 11 the  
boundary conditions are as follows. 

A t  t he  approach  hyperbola: 
1 g l = a  = O  

. .  

g3 = r ( a  1 ) v(a 1 cos  y(a 1 1 - hl = 0 

1 g5 = m(a ) - M1 = 0 

A t  the  branch  point B: 

2 1  g 6 = a  - b  = O  

2 
g7 = v(a ) - v(b ) = 0 1 

g8 = Y(a ) - Y(b ) = 0 
2 1 

2 g9 = r ( a  ) - r ( b  ) = 0 1 

gl0 = +(a - b(b 1 = 0 
2 1 

2 gll = m(a ) - 3 = o 
g12 = a3 - b = 0 

= v(a ) - v(b 1 = 0 3 
g13 

1 

= Y(a ) - Y(b 1 = 0 3 1 
g14 
gls = r ( a  ) - r ( b  ) = 0 3 1 

1 
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3 1 g16 = +(a - +(b ) = 0 

g17 = d a  1 - m ( b ) + M ; ! = O  1 

A t  point P: 
2 g18 = v(b ) - V2 = 0 

2 
g19 = y(b ) -y = 0 

2 g20 = r(b ) - R = 0 

A t  the   parking  orbi t ,   point  Q: 

2 

= v ( b  ) - V  = O  3 

3 -  
g21 3 
g22 = Y(b 1 - 0 

g23 = r ( b ) - % = O  3 

g24 = m ( b ) - 3 = O  3 

The performance  index i s  again 

2 J = g  = - m ( b )  
0 

so that   wi th   these boundary  conditions  the  associated  transversali ty 
conditions become: 

A t  point 0 

1 H,(a ) = 0 

where 

(4 .25 )  Ho(t> = - hv % sin Y - h (L - ”) cos Y + Arv sin y 
r r2v 

A t  the  branch  point  equations (4.12-16) apply along with 

( 4 . 2 6 )  H ( a  ) + H (a ) - H  (b ). 2 2  3 3 - 1 1  

The above equation may be  reduced by observing  that  
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so (4.20)  reduces  to 

Equations (4.17-20) a r e  a l s o  app l i cab le   t o   t h i s  problem  implying 
t h a t  

and 

H(t)  E 0. 

Once again h may be  ignored and the  zero H function may be used t o  
eliminate an 6 the r   mu l t ip l i e r .  

Equation (4.21) does  not  apply  here  but i n  i t s  place 

hm(b ) = 1. 2 

This  completes  the l ist  of t ransversal i ty   condi t ions which r e s t r i c t  
the problem solution. O f  course,  equations (4.6-11) st i l l  may be  used 
t o  determine  the  steering  for  each  branch. 

The determination of the  t imes,  t , to   begin  and, t , t o  end the  
coast  during  branch 3 may be  accomplisfied i n  a   var ie ty  of w a y s .  For 
example, the   en t i re   coas t  may be  eliminated  from  the  problem  analytically 
using  the  technique  of  reference 14. I n  any case  the  necessary  condi- 
t i o n s   t o  be s a t i s f i e d  by the  minimizing branched t r a j ec to ry   a r e  

L( t c )  = 0 

and 

L( t r )  = 0. 

AIR TRAFFIC CONTROL. The class   of  problems being  considered in t h i s  
study includes  cooperative maneuvers of maqy a i r c r a f t .  One of  the 
most recently  publicized problems of th i s   type  i s  the   cont ro l  of air 
t r a f f i c  in the  approach t o   l a r g e   a i r p o r t s .  

Although  people are now working on exot ic  and far reaching  plans 
f o r  tomox-ow's t ranspor ta t ion   needs ,   near   t e rm  so lu t ions   for   a i r   t ra f f ic  
control  are  feasible  through  an  optimal  control  approach. Whatever 
the  approach,  the  objective must be to   re l ieve   the   conges t ion  by 
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landing  large numbers of planes faster without a loss   o f   e f f ic iency   or  
sa fe ty  . 

A t  the   p resent   t ime  a i rc raf t  f l y  holding  patterns i n  a "stacked" 
configuration  represented by the  cyl inder  i n  Figure  12a. Each a i r c r a f t  
has   an  a l t i tude  separat ion,  Ah, from the   ad jacen t   a i r c ra f t  and f l i e s  
in constant   a l t i tude  concentr ic   c i rc les .  One by one  each a i r c r a f t  i s  
brought  out  of  the  holding  pattern  to a r'gateff  from which t h e   f l i g h t  
follows a f ixed  gl ide  path  to   the runway .  This  approach,  while  desirable 
from a sa fe ty   o r   r e l i ab i l i t y   po in t   o f  view  because  of i t s  s implici ty ,  
does  not  take fu l l  advantage  of modern computer cont ro l   capabi l i t i es .  

If a l i t t l e   f l e x i b i l i t y  i s  allowed so t h a t  some control  over  the 
path  of  each  craft i s  ava i lab le ,   then   the  problem  of  getting  several 
a i r c r a f t   t o   t h e   g a t e  a t  a given  distance  apart  may be s t a t ed  in terms 
of f inding a minimal  branched t ra jec tory .  

The general and r e a l i s t i c  model f o r   t h i s  problem would be three 
dimensional and would include  dynamical  equations  with  both  pure state 
and state-control  inequality  constraints.   Solutions  using such a 
model would be d i f f i cu l t   t o   ob ta in   numer i ca l ly  and  even more d i f f i c u l t  
t o   o b t a i n  in closed form. For that   reason a representat ive model i n  
two dimensions  with  kinematic  constraints and no inequal i t ies   has  been 
chosen t o  demonstrate  the  technique. 

Only two a i r c r a f t  w i l l  be  considered and motion w i l l  be confined 
t o  a horizontal  plane. The control  region i s  shown in Figure12b  as 
a c i r c l e .  The path of  t he  first a i r c r a f t  i s  represented as branch 1 
and the second as branch  2. The motion  of  each  aircraft i s  described 
by two different ia l   equat ions.  

Branch 1: 'Branch 2: 

1 1 22 = u2 

2 q = u1 

2 2 
jc2 = u2 

The superscripts  indicating  branch number will be  dropped when possible. 

The initial s t a t e  of t h e  two a i r c r a f t  i s  specif ied by a s e t  of 
boundary  conditions : 

For  the f i rs t  a i r c ra f t :  

1 g l = a  = O  
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BRANCH 2 I 

Figure 12a. R e a l i s t i c  Model f o r  Air T r a f f i c  Control 

Figure 12b. Approximate Model for Projected  Terminal Phase. 
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1 g2 = xl(a ) = O 

g3 = x2(a 1 - &V = o  
For  the  second  aircraft:  

g4 
= a 2  - T o  = O  

2 g5 = xl(a ) - h = 0 

2 g6 = x2(a ) - k = 0 

A t  the   terminal   point   (or   gate)  : 

g7 
gg = y ( b  1 = o  

g10 = x+ ) = 0 

= b 2 - b 1 - A T = 0  

1 

1 

2 

2 

g9 = x2(b ) = 0 

gll = x2(b = 0 

The ga te  in this  case  has  been  chosen as the   o r ig in ,  o r  the   cen ter  
of  the  control  region.  This  merely  simplifies some of   the   l a te r   a lgebra .  
The performance  index must take i n t o  account  the minimum time  aspect of 
landing   the   a i rc raf t  as wel l  as the   e f f ec t s   o f   con t ro l   e f fo r t   fo r  each 
a i r c r a f t .  That i s ,  t h e   a i r c r a f t  
t h i s  should  not  cost  too much i n  
c o n t r o l   e f f o r t   f o r  each a i r c r a f t  
performance  function. 

should  reach  the  gate very quickly  but 
control  effort .   Therefore,   the weighted 
i s  added to   t he   t ime   t o  make up the 

+ b  1 

For t h i s  formulati.on  the  H-function  for  each  branch i s :  

j = 1 , 2  

Hence, the  Lagrange mult ipl iers   are   constant  and the   cont ro ls   a re  all 
constant . 
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The  transversality  conditions  yield  one  piece  of.information, 
namely 

H (b ) + H (b ) =1. 1 1  2 2  

Integrating  the  equations  of  motion and substituting  the  boundary 
values  yields  four  algebraic  equations  which ong with  the  trans- 
versality  condition may be  used  to  determine 8- and  the  four  controls. 

u; = 

u? = 
I 

where b satisfies 1 

0 u1 2 = - ( d K 2  )/bl 
h/(To - b1 - AT) u2 =k/(To - b' - AT) 2 

This  equation  is  quartic in b1 and can  be  solved in closed  form. 
However,  for  the  case  of  To= AT the  equation  reduces  to a quadratic 
having  the  root 

b1 = 4 1/2(5 + K2)(h2 + k2) ' 
Also, the  control  effor_t 

a 

E2 2 
[(%I2 + (~,)~]dt = - 2 . 5' K2 a 

Figure 13 shows  lines  of  constant E and b plotted  against 
the  weighting  factors 5 and %. Since% s f cal bo hnd s for  the  control 
efforts  establish a boundary and an upper  limit on time may be  given, 
the  weighting  factors may be  chosen as a compromise  somewhere  between 
these  bounds. 

This  example  represents on ly  the  procedure  that  might  be  used f o r  
developing a sophisticated  air  terminal  traffic  control  scheme;certainly 
many other  factors  would  have  to  be  considered  but  the  basic  approach 
would  be  vezy  similar. 
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DIRECTION OF INCREASING EFFORT El 

Figure 13. Performance  Tradeoffs bY Choice of 
Wef ghtfng  Factors. 
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Several of the  applications  presented in the  previous  section were 
examined numerically i n   o r d e r   t o   a s s e s s   t h e   u t i l i t y  of branched t r a -  
j ec to r i e s .  Optimal  branched t r a j e c t o r i e s  were computed f o r   t h e  two- 
payload  launch  case and the  secondary  mission  optimization example. 
The remaining  numerical  effort was devoted. t o   t he   l ande r /o rb i t e r  
maneuvers. 

All numerical  claculations were made with TRW System  Group's 
SDS-940 time  sharing  system. Two separate programs  were  developed 
to  solve  the  branched  trajectory problem.  These a r e  a numerical 
in tegra t ion  program  and  an i t e r a t o r  program. The solution  procedure 
generally proceeded as  follows. 

Guesses a r e  made f o r  unknown i n i t i a l   v a l u e s  on each  branch. 
If a p a r t i c u l a r   v a r i a b l e ,   s t a t e   o r  Lagrange mul t ip l i e r ,  i s  
continuous  from one branch to   the   next   then  no guess i s  
required.Similar lyif   the   terminal   value of  a mul t ip l ie r  i s  
s p l i t  between the initial. values   of   that   mult ipl ier  on two 
other  branches  (as in eqn. lt.12) then  only one addi t ional  
guess i s  required. 

With a l l  t he  initial values,  guessed and given,  each  branch 
i s  integrated  numerical ly   unt i l  some appropriate  cutoff 
value i s  reached. The cutoff  value may be one  of the  terminal 
conditions on the   s ta te   o r   t ime o r  it may be  a switching 
function. A l l  of the  terminal  values  are  recorded a l o n g  
with  the  guesses. 

Each guess i s  then  perturbed  individually and a new t r a j ec to ry  
i s  computed by numerical  integration. Again all the  terminal 
values  are  recorded along with  the  appropriate  set  of guesses. 
The f l e x i b i l i t y  of t he  time sharing  system comes in to   p lay   a t  
t h i s  point.  Since  each  perturbed  trajectory i s  computed and 
examined individually,  any unsui tab le   t ra jec tor ies  may be 
discarded and replaced by new t ra jec tor ies   ob ta ined  by changing 
the   par t icu lar   per turba t ions .   Unsui tab le   t ra jec tor ies  might 
include those which fail  t o  meet some cutoff  conditions,  those 
whose end s ta tes   vary   too   g rea t ly   o r   ins igni f ic&t ly  from the  
nominal  unperturbed  case and those which appear t o  belong t o  a 
d i f fe ren t   ca tegory   o f   t ra jec tor ies  from the  unperturbed  case. 

The data from s teps  (2) and (3) is then  used i n  t h e   i t e r a t o r  
program t o  compute par t ia l   der ivat ives   of   the   terminal   values  
with  respect t o  the  gJesses.  When t h e   p a r t i a l s   a r e  known 
correct ions  for  t he  guesses are computed. If the  correct ions 
seem unreasonably  large  they may be  reduced by a common fac to r .  
Step (2) i s  then  repeated  with  the  corrected  guesses. If t h i s  
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r e s u l t s   i n  an improvement the  correct ions may be  applied 
again and  again until no improvement i s  seen. A t  t h i s   p o i n t  
t he   pa r t i a l   de r iva t ives  may be  re-used t o   c a l c u l a t e  new 
correct ions  or  a new set of   par t ia l   der iva t ives  m y  be com- 
puted by repeat ing  s tep ( 3 ) .  

This  procedure i s  e s sen t i a l ly  a Newton-Raphson i t e r a t i o n .  The 
degree  of   dif f icul ty  as well as cost  increases  rapidly  with  the number 
of guesses.  Fortunately, some o f   t h e   p i t f a l l s  of this   technique may 
be  avoided i n   t h i s  "open loop" set  up.  Since  the  operator  (engineer) 
may examine each   t r a j ec to ry   p r io r   t o  computing the  next one, he may 
adjust  such  important  parameters as per turba t ion   s tep   s ize ,  nominal 
guess  values,  etc. 

Using t h i s  remote time sharing  system  other  al ternatives are a l s o  
avai lable   to   the  operator .   In   determining an  i n i t i a l  set of  guesses 
fo r   s t ep  (1) he may use a random w a l k  procedure. That i s  he may 
a r b i t r a r i l y  make changes i n  the  guesses with t h e  purpose  of  reducing 
the   l a rges t   e r ro r s   i n   t he   t e rmina l  state. Usually i n   t h i s  procedure 
one guess I s  perturbed i n   t h e  most favorable  direction until the e r ro r s  
begin t o  grow, then  that   guess  i s  held fixed  while  another i s  perturbed 
and so on. 

Another  technique which i s  sometimes helpful  is t o  use  steps (1) 
through (4)  above but  ignore one o r  more o f  the  guesses and a like 
number of  terminal  constraints.  Then the  ignored  guesses may be 
parameterized to   sa t i s fy   the   ignored   cons t ra in ts .  

The numerical  integration program  used to   ca l cu la t e   t he   i nd iv idua l  
t r a j e c t o r i e s  employs a fourth  order  Runge-Kutta ( r e f .  15) integrat ion 
scheme t o  simultaneously  solve the Euler-Lagrange and state equations 
(except  for  the mass equation which is integrated  in   c losed form  and 
calculated as an expl ic i t   funct ion of time). 

Although no formal   error  analysis was performed on the  numerical 
results  an  estimate of t he   t runca t ion   e r ro r  (ref. 15) was obtained by 
re-running  converged  trajectories  with the  s tep  s ize   halved.  If the  
terminal states fo r   t hese  two coqu ta t ions  are respectively X and Y 
then the estimate of t runca t ion   e r ror  i s  given by: 

For a l l  of   the  data   presented  here   this  estimate indicated  accuracy 
through  eight  significant  decimal  digits.  It should be emphasized 
tha t   th i s   represents   on ly  an estimate of t runca t ion   e r ror  and i n  no 
way limits t h e  s ize  of mund off   e r ror .  
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Altho%h t h e  time sharing  system as described i s  t o  be highly 
recommended as a research   too l  it should  not be  used for  production 
computations  because of the  ineff ic iencies   of  "man i n   t h e  loop ." 

TWO PAYLOAD LAUNCH. Numerical  solutions were obtained  for   the 
case  of  multiple  payload  launches  discussed i n   s e c t i o n  4.0. Only two 
payloads were considered  with one be ing   inser ted   in  a 180 KM c i r cu la r  
o rb i t  and t h e   o t h e r   i n  a 220 KM c i r cu la r   o rb i t .  A s  i n d i c a t e d   i n  
sec t ion  4.0 f ive   guesses   a r e   r equ i r ed   fo r   t h i s  problem. Two are the  
i n i t i a l   v a l u e s  of mul t ip l ie rs  on branch 1 and t h r e e   a r e   t h e   i n i t i a l  
values of mul t ip l ie rs  on branch 3 (see Figure 9). Branch 1 is  in te -  
grated  for  377.65 seconds a t  which time dual  staging  occurs. Branch 2 
terminates at a given  value  of mass while  Branch 3 s tops a t  c i r cu la r  
o rb i t   ve loc i ty   fo r   t he  220 KM orb i t .  

The data used for   the   var ious  stages is  l i s t e d   i n   t a b l e  1 and 
represents a vehicle similar t o   t h e   S a t u r n  V. If that  analogy were 
fo l lowed  the   in i t ia l  state f o r  Branch 1 would correspond t o  burnout 
conditions  (exoatmospheric) f o r  s tage one of the  Saturn V, Branch 1 
would correspond t o   t h e   t r a j e c t o r y  of t he  S-I1 (stage two)  carrying 
the  S-IVB ( s tage   th ree)  and CSM (command-service  module),  Branch 2 
would be the  path  of   the S-IVB alone and  Branch 3 the   path  of   the CSM. 

Before  attempting  the  branched  solution  several  conventional  opti- 
mal t r a j e c t o r i e s  were computed in order   to   ga in  a f e e l i n g   f o r   t h e  
performance c a p a b i l i t i e s ,   m u l t i p l i e r   s e n s i t i v i t i e s  and t r a j ec to ry  
shape.  Reference  trajectory 1 consists  of two separately computed 
optimal  paths. The first path is  tha t   o f   the  S-I1 stage  carrying  the 
S-IVB and CSM t o  S-I1 burnout a f t e r  which the  S-IVB ca r r i e s   t he  CSM 
t o  a 180 KM c i r cu la r   o rb i t .  From tha t   o rb i t   t he  second  path i s  f o r  
the  CSM and terminates in a 220 KM c i r cu la r   o rb i t .  

Reference  trajectory 2 i s  also made up  of two separate conven- 
t iona l   op t imal   t ra jec tor ies .  The first i s  tha t   o f  a two stage  rocket 
terminating a t  the  180 KM c i r cu la r   o rb i t .  The first  s tage is the  S-I1 
carrying  the S-IVB and CSM. A t  the  staging  point  the  loaded CSM i s  
discarded along with  the empty S-I1 so t h a t   t h e  S-IVB proceeds  alone. 
This   t ra jectory  gives   the maximum payload a t t a inab le  in t h e  180 KM 
o r b i t  i f  the  branching  occurs a t  S-I1 burnout. The second par t   of  
t h i s   r e f e rence   t r a j ec to ry  i s  an  opt imal   path  for   the CSM from S-I1 
burnout t o   t h e  220 KM orb i t .  

Finally, the  optimal  branched  trajectory was computed. Because 
of  the results f o r  Reference  trajectory 2 the  payload  for   the 180 KM 
o r b i t  w a s  prescribed a t  114255.7 KG which i s  only 28.4 KG l e s s   t h a n  
t h e  maximum achievable. By reducing  the f i rs t  payload  requirement 
t h i s  s m a l l  amount t h e  second  payload was increased 156.1 KG over 
Reference  trajectory 2. Table 2 compares the  performances  of  the 
optimal  branched  solution and Reference  t ra jector ies  1 and 2. Notice 
that Reference  trajectory 1 outperforms  the  branched  solution by 
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. . .. .. 

TABLE 1 

DATA FOR NlTMERICAL EXAMPLES 

" 

Initial  State 

V m + r Y 

KM/S e c KG degrees KM degrees 

2.8481269 611582.1 0. 6465.036 U* 91 

1 1 

1 

30.5 85636.8 3 
213.1 8896yC.3 2 
1068.2 4448222 

Initial Mass - 
KG 

611582.1 

19820.0 
145026.5 

TABLE 2 

PERFORMANCE  COMPARISONS FOR DUAL PAYLOADS 
. " ~ ~ , "~ 

I 

Payload 
Trajectory 2 Trajectory 1 Trajectory Number 
Reference Reference Branched 

~. 

1 
13u3 6 14715 5 13299 7 2 
U 8 4  1 109985.2 u 5 5  7 
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1415.8 KG f o r   t h e  second  payload  but pays f o r   t h i s   w i t h  4270.5 KG f o r  
t h e  first payload. 

An al t i tude-veloci ty   plot  of t he  branched  solution is  given in 
Figure l-4. Although  Reference t r a j ec to ry  2 was not  plotted  because 
of the  c loseness   to   the  branched  t ra jectory i t s  S-I1 burnout  conditions 
a re   s l i gh t ly   h ighe r  and fas te r   than   those  shown. This   s l igh t   d i f fe rence  
permits   the  branched  t ra jectory  to   have  bet ter  performance f o r   t h e  
220 KM o rb i t .  

The CSM por t ion   of   the   t ra jec tory  i s  given in alt i tude-velocity 
coordinates i n  Figure 15 along  with  the  analogous  part  of Reference 
t ra jec tory  1. I n  comparing the  initial s ta tes   o f   these  two branches 
it i s  seen  that   for   Reference  t ra jectory 1 branch 3 starts out in a 
much more favorable   posi t ion  for   the 220 KM orb i t .  On the   o ther  hand 
the   cos t ,  in terms  of number one  payload i s  very  high i n   o r d e r   t o  
attain such  an i n i t i a l   s t a t e   f o r  branch 3.  

For this  solution  branching was o n l y  considered a t  2-11 burnout. 
Certainly  other  times  could have  been  used. I n   f a c t ,  it would be 
possible  to  leave  the  branching time free  (branching t o  occur any time 
during S-IVB f l i g h t )  and develop a switching  function  from  the trans- 
versali ty  conditions.   This would be a log ica l   next   s tep   a f te r   severa l  
fixed-branch-time t r a j e c t o r i e s  have  been computed. 

SECONDARY MISSION OPTIMIZATION. Most of t he   r e su l t s   o f   t h i s  phase 
of  the  study were presented  separately in reference 16. A brief  
summary of some of  the more in te res t ing   aspec ts  of t h i s  problem i s  
given below. 

The secondary  mission  case i s  very   s imi la r   to   the   dua l  payload 
example except   that ,  a t  t he  branch  point,  the  vehicle may proceed  along 
e i t h e r  branch  2 o r  branch 3 .  If no fai lure   occurs  and branch  2 i s  
chosen  then o n l y  the  empty s tage   tha t  was used f o r  branch 1 i s  dropped. 
The vehicle   character is t ics  and i n i t i a l   s t a t e  used f o r   t h i s  problem 
are   the  same as those  given in Table 1 except   that   the  in i t ia l  mass 
f o r  branch  2 i s  145026.5 + 19820 = 164846.5 KG. This  corresponds t o  
carrying  along  the CSM with  the S-IVB on branch  2  but  only  the CSM 
on branch 3.  The module) i s  dropped p r io r  t o  Branch 3 .  

I n  order   to   es tab l i sh  some bas i s   fo r  comparison a conventional 
optimal  trajectory was computed for t h e  primary  mission  only  (180 KM 
c i rcu lar   o rb i t ) .   This   t ra jec tory  produced 129805 KG payload f o r   t h e  
primary  mission. From the  staging  point of th i s   so lu t ion   another  
optimal  trajectory,   using  the CSM only,  was computed f o r   t h e  secondary 
mission (206 KM c i r cu la r   o rb i t ) .  The payload fo r   t h i s   mi s s ion  was 
13720 G. Alti tude-veloci ty   plots   for   the S-11, S-I??B and CSM portions 
of these  opt imal   t ra jector ies   are  shown in Figures 16 and 17; t he   l abe l  
%ominalII is  used to   d i s t inguish   these   p rof i les  from the  optimal 
branched t r a j ec to r i e s .  
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Figure 15. Comparison o f  Branch 3 Solutions 
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For  the  nominal  trajectory 35041.3 KG of propellant was used f o r  
branch 2. This   es tabl ishes  a lower limit f o r  branch 2 propellant; any 
amount less than 35041.3 KG w i l l  result in a lo s s  of  payload f o r   t h e  
primary  mission. 

It is also poss ib l e   t o   e s t ab l i sh  a pract ical   upper  limit f o r  
branch  2  propellant. This was accomplished by computing a conventional 
optimal  trajectory  consisting o n l y  of  branches 1 and 3 with  the terminal 
point satisfying the  secondary  mission  circular  orbit   conditions.  Once 
again, the  remaining  branch  (2) was optimized  start ing a t  the  staging 
point  between 1 and 3 and terminating a t  the  pr imary  orbi t .   For   this  
pair  of  optimal  trajectories  the  secondary  mission  payload was 14182.3 
KG and the  propel lant  consumed on  branch  2 was 38590.5 KG (corresponding 
t o  a primary  payload  of 126256 KG). Since no branched t r a j ec to ry  w i l l  
provide more t h a n   U 8 2 . 3  KG secondary  payload, it would be  wasteful 
to   a t tempt   to   burn  more than 38590.5 KG of propellant on branch 2. 

After   the  maximum payload f o r   t h e  nominal  case was established it 
was possible  to  consider  secondary  mission  optimization by specifying 
some payload f o r   t h e  primary  mission l e s s   t han   t he  maximum. The 
number 129168 KG was chosen,  thus  allowing 637 KG more f u e l   t o  be 
consumed during  the S-IVB f l igh t .   F igure  16 shows t h a t   t h i s   a d d i t i o n a l  
propellant  permits a h igher   t ra jec tory   for   the  S-I1 (branch 1). which, 
i n  turn,   places  the  branch  point in a posi t ion more favorable t o  t he  
secondary  mission. A s  a re su l t   t he  branched  solution  provides U+OOO KG 
payload for  the  secondary  mission,  an  increase of 280 KG over  the 
nominal. By expending 637 KG more propellant in branch  2 we can de- 
crease  the  propellant in branch 3 by 280 KG which  could spe l l   t he  
difference between par t ia l   success  and  complete f a i l u r e  i f  an  abort i s  
required a t  S-IVB . ignit ion.  

Figure 18 gives  a comparison  of cont ro l   h i s tor ies   for   the   op t imal  
branched  solution and the  nominal. The marked difference in control 
f o r  branch  2 i s  due to   t he   r e l a t ive   l oca t ions  of the  branch  point  with 
respect t o  theprimary  orbit. On the optimal branched so lu t ion   t h i s  
point f a i l s  j u s t  above 180 KM While on the  nominal staging  takes  place 
a t  175 KM, 5 KM below the   des i red   o rb i t .  

To th i s   po in t  only the  circumstance  of  an  abort  occurring a t  S-IVB 
ignition  has  been  considered.  This  event was chosen  because  of i t s  
c r i t i ca l   na tu re  and the  optimal  branched  trajectory was designed  on 
the  assumption  that   failure might on ly  occur a t  this point.  Obviously 
other  branch  points  could be included in the  analysis although  numerical 
difficulty  increases,  because of increased  dimensionality,  with  the 
addition  of  each  branch. Also, in the  case  of  multiple  secondary 
branches  the  performance  criterion would have to  include  weighted 
performances  of  each  branch. 
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Although the  branched t ra jector ies   considered  here  were not  
spec i f ica l ly   des igned   for  an abort  occurring after S-IVB igni t ion,   they 
do possess some capabi l i ty   for   tha t   case .  To investigate  the  per- 
formance behaxior  result ing from  such  an  occurrence, two optimal  abort 
t r a j e c t o r i e s   t o   t h e  secondary  orbit   were  calculated  start ing 47.35 
seconds after S-IVB igni t ion.  The first case was i n i t i a t e d  on the  
nominal t ra jec tory   whi le   the  second abort  departed  from  branch 2 of 
the branched solution. 

The l a t t e r  provided 58 KG more payload  than  the  former,  but  even 
more important, it provided 615 KG more payload  than  the  optimal 
branched  solution  with  an  abort  occurring a t  S-IVB igni t ion.  Thus, 
w h i l e  l a te r  aborts  from  the  branched  trajectory may not  be  optimal, 
they  are   a lso  less   l ikely  to   require   opt imal i ty   because  of  a na tura l  
increase in payload  capability. 

Figure 19 i s  an  a l t i tude-veloci ty   plot   of   the  two abort   t ra jec-  
t o r i e s .  The abort  from  the  branched  solution  has  an initial a l t i t u d e  
advantage,  but a slight  disadvantage i n  ve loc i ty  and f l ight   path  angle .  
If the  abort   occurs   la te  enough these  disadvantages  eventually overcome 
the  edge in a l t i t u d e  as shown i n  Figure 20. 

The secondary  mission  chosen  here i s  t r u l y   j u s t   t h a t .  An alter- 
nate  choice  could have  been t rue  abort  where the  second  mission would 
represent  re-entry  conditions  instead  of  the 220 KM c i r cu la r   o rb i t .  
The abort   case  should  yield  to  the same analysis  and  numerical  tech- 
niques. 

BRANCHED LANDER/ORBITF,R MANEXJVERS. The la t te r  part   of this study 
w a s  devoted t o  a numerical  investigation  of  optimal  branched  lander/ 
o r b i t e r  maneuvers as shown in Figure 11. T h i s  problem  proved  consider- 
ably more d i f f icu l t   than   the   p rev ious  two numerical examples  and a 
solut ion was not   obtained.   Par t   of   the   t rouble   with  this   case i s  t h e  
necessity.of  including a coasting  period in branch 2. This, combined 
wi th   t he   s ens i t i v i ty  imposed by t h e  near zero terminal ve loc i ty   fo r  
branch 2, provided an obstacle  not easily overcome especially  with 
the   s impl i f ied   i t e ra t ion  scheme used. 
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TIME OF ABORT FROM BEGINNING 
OF BRANCH 2 (S-IV B) - SECONDS 

Figure 19. A1 t i  tude - Velocity  Plot  for Abort from Nominal 
and Branched Solution 47.35 
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